Gapminders#

import param
import numpy as np 
import pandas as pd
import panel as pn

import altair as alt
import plotly.graph_objs as go
import plotly.io as pio
import matplotlib.pyplot as plt

pn.extension('vega', 'plotly', defer_load=True, template='fast')
import hvplot.pandas

Configuration#

Let us start by configuring some high-level variables and configure the template:

XLABEL = 'GDP per capita (2000 dollars)'
YLABEL = 'Life expectancy (years)'
YLIM = (20, 90)
ACCENT = "#00A170"

PERIOD = 1000 # milliseconds

pn.state.template.param.update(
    site_url="https://panel.holoviz.org",
    title="Hans Rosling's Gapminder",
    header_background=ACCENT,
    accent_base_color=ACCENT,
    favicon="static/extensions/panel/images/favicon.ico",
    theme_toggle=False
)
<param.parameterized._ParametersRestorer object at 0x1138bc490>

Extract the dataset#

First, we’ll get the data into a Pandas dataframe. We use the built in cache to speed up the app.

@pn.cache
def get_dataset():
    url = 'https://raw.githubusercontent.com/plotly/datasets/master/gapminderDataFiveYear.csv'
    return pd.read_csv(url)

dataset = get_dataset()

YEARS = [int(year) for year in dataset.year.unique()]

dataset.sample(10)
country year pop continent lifeExp gdpPercap
92 Bahrain 1992 529491.0 Asia 72.601 19035.579170
8 Afghanistan 1992 16317921.0 Asia 41.674 649.341395
1193 Paraguay 1977 2984494.0 Americas 66.353 3248.373311
1661 West Bank and Gaza 1977 1261091.0 Asia 60.765 3682.831494
959 Mali 2007 12031795.0 Africa 54.467 1042.581557
27 Algeria 1967 12760499.0 Africa 51.407 3246.991771
960 Mauritania 1952 1022556.0 Africa 40.543 743.115910
328 Congo, Dem. Rep. 1972 23007669.0 Africa 45.989 904.896068
932 Malawi 1992 10014249.0 Africa 49.420 563.200014
303 Colombia 1967 19764027.0 Americas 59.963 2678.729839

Set up widgets and description#

Next we will set up a periodic callback to allow cycling through the years, set up the widgets to control the application and write an introduction:

def play():
    if year.value == YEARS[-1]:
        year.value = YEARS[0]
        return

    index = YEARS.index(year.value)
    year.value = YEARS[index+1]    

year = pn.widgets.DiscreteSlider(
    value=YEARS[-1], options=YEARS, name="Year", width=280
)
show_legend = pn.widgets.Checkbox(value=True, name="Show Legend")

periodic_callback = pn.state.add_periodic_callback(play, start=False, period=PERIOD)
player = pn.widgets.Checkbox.from_param(periodic_callback.param.running, name="Autoplay")

widgets = pn.Column(year, player, show_legend, margin=(0,15))

desc = """## 🎓 Info

The [Panel](http://panel.holoviz.org) library from [HoloViz](http://holoviz.org)
lets you make widget-controlled apps and dashboards from a wide variety of 
plotting libraries and data types. Here you can try out four different plotting libraries
controlled by a couple of widgets, for Hans Rosling's 
[gapminder](https://demo.bokeh.org/gapminder) example.

Source: [pyviz-topics - gapminder](https://github.com/pyviz-topics/examples/blob/master/gapminders/gapminders.ipynb)
"""

settings = pn.Column(
    "## ⚙️ Settings", widgets, desc,
    sizing_mode='stretch_width'
).servable(area='sidebar')

settings

Define plotting functions#

Now let’s define helper functions and functions to plot this dataset with Matplotlib, Plotly, Altair, and hvPlot (using HoloViews and Bokeh).

@pn.cache
def get_data(year):
    df = dataset[(dataset.year==year) & (dataset.gdpPercap < 10000)].copy()
    df['size'] = np.sqrt(df['pop']*2.666051223553066e-05)
    df['size_hvplot'] = df['size']*6
    return df

def get_title(library, year):
    return f"{library}: Life expectancy vs. GDP, {year}"

def get_xlim(data):
    return (data['gdpPercap'].min()-100,data['gdpPercap'].max()+1000)

@pn.cache
def mpl_view(year=1952, show_legend=True):
    data = get_data(year)
    title = get_title("Matplotlib", year)
    xlim = get_xlim(data)

    plot = plt.figure(figsize=(10, 6), facecolor=(0, 0, 0, 0))
    ax = plot.add_subplot(111)
    ax.set_xscale("log")
    ax.set_title(title)
    ax.set_xlabel(XLABEL)
    ax.set_ylabel(YLABEL)
    ax.set_ylim(YLIM)
    ax.set_xlim(xlim)

    for continent, df in data.groupby('continent'):
        ax.scatter(df.gdpPercap, y=df.lifeExp, s=df['size']*5,
                   edgecolor='black', label=continent)

    if show_legend:
        ax.legend(loc=4)

    plt.close(plot)
    return plot

pio.templates.default = None

@pn.cache
def plotly_view(year=1952, show_legend=True):
    data = get_data(year)
    title = get_title("Plotly", year)
    xlim = get_xlim(data)

    traces = []
    for continent, df in data.groupby('continent'):
        marker=dict(symbol='circle', sizemode='area', sizeref=0.1, size=df['size'], line=dict(width=2))
        traces.append(go.Scatter(x=df.gdpPercap, y=df.lifeExp, mode='markers', marker=marker, name=continent, text=df.country))

    axis_opts = dict(gridcolor='rgb(255, 255, 255)', zerolinewidth=1, ticklen=5, gridwidth=2)
    layout = go.Layout(
        title=title, showlegend=show_legend,
        xaxis=dict(title=XLABEL, type='log', **axis_opts),
        yaxis=dict(title=YLABEL, **axis_opts),
        autosize=True, paper_bgcolor='rgba(0,0,0,0)',
    )
    
    return go.Figure(data=traces, layout=layout)

@pn.cache
def altair_view(year=1952, show_legend=True, height="container", width="container"):
    data = get_data(year)
    title = get_title("Altair/ Vega", year)
    xlim = get_xlim(data)
    legend= ({} if show_legend else {'legend': None})
    return (
        alt.Chart(data)
            .mark_circle().encode(
                alt.X('gdpPercap:Q', scale=alt.Scale(type='log'), axis=alt.Axis(title=XLABEL)),
                alt.Y('lifeExp:Q', scale=alt.Scale(zero=False, domain=YLIM), axis=alt.Axis(title=YLABEL)),
                size=alt.Size('pop:Q', scale=alt.Scale(type="log"), legend=None),
                color=alt.Color('continent', scale=alt.Scale(scheme="category10"), **legend),
                tooltip=['continent','country'])
            .configure_axis(grid=False)
            .properties(title=title, height=height, width=width, background='rgba(0,0,0,0)') 
            .configure_view(fill="white")
            .interactive()
    )

@pn.cache
def hvplot_view(year=1952, show_legend=True):
    data = get_data(year)
    title = get_title("hvPlot/ Bokeh", year)
    xlim = get_xlim(data)
    return data.hvplot.scatter(
        'gdpPercap', 'lifeExp', by='continent', s='size_hvplot', alpha=0.8,
        logx=True, title=title, responsive=True, legend='bottom_right',
        hover_cols=['country'], ylim=YLIM, xlim=xlim, ylabel=YLABEL, xlabel=XLABEL
    )

Bind the plot functions to the widgets#

mpl_view    = pn.bind(mpl_view,    year=year, show_legend=show_legend)
plotly_view = pn.bind(plotly_view, year=year, show_legend=show_legend)
altair_view = pn.bind(altair_view, year=year, show_legend=show_legend)
hvplot_view = pn.bind(hvplot_view, year=year, show_legend=show_legend)

plots = pn.GridBox(
    pn.pane.HoloViews(hvplot_view, sizing_mode='stretch_both', margin=10),
    pn.pane.Plotly(plotly_view, sizing_mode='stretch_both', margin=10),
    pn.pane.Matplotlib(mpl_view, format='png', sizing_mode='scale_both', tight=True, margin=10),
    pn.pane.Vega(altair_view, sizing_mode='stretch_both', margin=10),
    ncols=2,
    sizing_mode="stretch_both"
).servable()

plots