Gapminders#

import param
import numpy as np 
import pandas as pd
import panel as pn

import altair as alt
import plotly.graph_objs as go
import plotly.io as pio
import matplotlib.pyplot as plt

pn.extension('vega', 'plotly', defer_load=True, template='fast')
import hvplot.pandas

Configuration#

Let us start by configuring some high-level variables and configure the template:

XLABEL = 'GDP per capita (2000 dollars)'
YLABEL = 'Life expectancy (years)'
YLIM = (20, 90)
ACCENT = "#00A170"

PERIOD = 1000 # milliseconds

pn.state.template.param.update(
    site_url="https://panel.holoviz.org",
    title="Hans Rosling's Gapminder",
    header_background=ACCENT,
    accent_base_color=ACCENT,
    favicon="static/extensions/panel/images/favicon.ico",
    theme_toggle=False
)
<param.parameterized._ParametersRestorer object at 0x12435da50>

Extract the dataset#

First, we’ll get the data into a Pandas dataframe. We use the built in cache to speed up the app.

@pn.cache
def get_dataset():
    url = 'https://raw.githubusercontent.com/plotly/datasets/master/gapminderDataFiveYear.csv'
    return pd.read_csv(url)

dataset = get_dataset()

YEARS = [int(year) for year in dataset.year.unique()]

dataset.sample(10)
country year pop continent lifeExp gdpPercap
1599 United Kingdom 1967 54959000.0 Europe 71.360 14142.850890
1160 Oman 1992 1915208.0 Asia 71.197 18616.706910
1279 Romania 1987 22686371.0 Europe 69.530 9696.273295
466 Egypt 2002 73312559.0 Africa 69.806 4754.604414
673 Hungary 1957 9839000.0 Europe 66.410 6040.180011
329 Congo, Dem. Rep. 1977 26480870.0 Africa 47.804 795.757282
796 Japan 1972 107188273.0 Asia 73.420 14778.786360
638 Haiti 1962 3880130.0 Americas 43.590 1796.589032
1379 Slovak Republic 2007 5447502.0 Europe 74.663 18678.314350
988 Mexico 1972 55984294.0 Americas 62.361 6809.406690

Set up widgets and description#

Next we will set up a periodic callback to allow cycling through the years, set up the widgets to control the application and write an introduction:

def play():
    if year.value == YEARS[-1]:
        year.value = YEARS[0]
        return

    index = YEARS.index(year.value)
    year.value = YEARS[index+1]    

year = pn.widgets.DiscreteSlider(
    value=YEARS[-1], options=YEARS, name="Year", width=280
)
show_legend = pn.widgets.Checkbox(value=True, name="Show Legend")

periodic_callback = pn.state.add_periodic_callback(play, start=False, period=PERIOD)
player = pn.widgets.Checkbox.from_param(periodic_callback.param.running, name="Autoplay")

widgets = pn.Column(year, player, show_legend, margin=(0,15))

desc = """## 🎓 Info

The [Panel](http://panel.holoviz.org) library from [HoloViz](http://holoviz.org)
lets you make widget-controlled apps and dashboards from a wide variety of 
plotting libraries and data types. Here you can try out four different plotting libraries
controlled by a couple of widgets, for Hans Rosling's 
[gapminder](https://demo.bokeh.org/gapminder) example.

Source: [pyviz-topics - gapminder](https://github.com/pyviz-topics/examples/blob/master/gapminders/gapminders.ipynb)
"""

settings = pn.Column(
    "## ⚙️ Settings", widgets, desc,
    sizing_mode='stretch_width'
).servable(area='sidebar')

settings

Define plotting functions#

Now let’s define helper functions and functions to plot this dataset with Matplotlib, Plotly, Altair, and hvPlot (using HoloViews and Bokeh).

@pn.cache
def get_data(year):
    df = dataset[(dataset.year==year) & (dataset.gdpPercap < 10000)].copy()
    df['size'] = np.sqrt(df['pop']*2.666051223553066e-05)
    df['size_hvplot'] = df['size']*6
    return df

def get_title(library, year):
    return f"{library}: Life expectancy vs. GDP, {year}"

def get_xlim(data):
    return (data['gdpPercap'].min()-100,data['gdpPercap'].max()+1000)

@pn.cache
def mpl_view(year=1952, show_legend=True):
    data = get_data(year)
    title = get_title("Matplotlib", year)
    xlim = get_xlim(data)

    plot = plt.figure(figsize=(10, 6), facecolor=(0, 0, 0, 0))
    ax = plot.add_subplot(111)
    ax.set_xscale("log")
    ax.set_title(title)
    ax.set_xlabel(XLABEL)
    ax.set_ylabel(YLABEL)
    ax.set_ylim(YLIM)
    ax.set_xlim(xlim)

    for continent, df in data.groupby('continent'):
        ax.scatter(df.gdpPercap, y=df.lifeExp, s=df['size']*5,
                   edgecolor='black', label=continent)

    if show_legend:
        ax.legend(loc=4)

    plt.close(plot)
    return plot

pio.templates.default = None

@pn.cache
def plotly_view(year=1952, show_legend=True):
    data = get_data(year)
    title = get_title("Plotly", year)
    xlim = get_xlim(data)

    traces = []
    for continent, df in data.groupby('continent'):
        marker=dict(symbol='circle', sizemode='area', sizeref=0.1, size=df['size'], line=dict(width=2))
        traces.append(go.Scatter(x=df.gdpPercap, y=df.lifeExp, mode='markers', marker=marker, name=continent, text=df.country))

    axis_opts = dict(gridcolor='rgb(255, 255, 255)', zerolinewidth=1, ticklen=5, gridwidth=2)
    layout = go.Layout(
        title=title, showlegend=show_legend,
        xaxis=dict(title=XLABEL, type='log', **axis_opts),
        yaxis=dict(title=YLABEL, **axis_opts),
        autosize=True, paper_bgcolor='rgba(0,0,0,0)',
    )
    
    return go.Figure(data=traces, layout=layout)

@pn.cache
def altair_view(year=1952, show_legend=True, height="container", width="container"):
    data = get_data(year)
    title = get_title("Altair/ Vega", year)
    xlim = get_xlim(data)
    legend= ({} if show_legend else {'legend': None})
    return (
        alt.Chart(data)
            .mark_circle().encode(
                alt.X('gdpPercap:Q', scale=alt.Scale(type='log'), axis=alt.Axis(title=XLABEL)),
                alt.Y('lifeExp:Q', scale=alt.Scale(zero=False, domain=YLIM), axis=alt.Axis(title=YLABEL)),
                size=alt.Size('pop:Q', scale=alt.Scale(type="log"), legend=None),
                color=alt.Color('continent', scale=alt.Scale(scheme="category10"), **legend),
                tooltip=['continent','country'])
            .configure_axis(grid=False)
            .properties(title=title, height=height, width=width, background='rgba(0,0,0,0)') 
            .configure_view(fill="white")
            .interactive()
    )

@pn.cache
def hvplot_view(year=1952, show_legend=True):
    data = get_data(year)
    title = get_title("hvPlot/ Bokeh", year)
    xlim = get_xlim(data)
    return data.hvplot.scatter(
        'gdpPercap', 'lifeExp', by='continent', s='size_hvplot', alpha=0.8,
        logx=True, title=title, responsive=True, legend='bottom_right',
        hover_cols=['country'], ylim=YLIM, xlim=xlim, ylabel=YLABEL, xlabel=XLABEL
    )

Bind the plot functions to the widgets#

mpl_view    = pn.bind(mpl_view,    year=year, show_legend=show_legend)
plotly_view = pn.bind(plotly_view, year=year, show_legend=show_legend)
altair_view = pn.bind(altair_view, year=year, show_legend=show_legend)
hvplot_view = pn.bind(hvplot_view, year=year, show_legend=show_legend)

plots = pn.GridBox(
    pn.pane.HoloViews(hvplot_view, sizing_mode='stretch_both', margin=10),
    pn.pane.Plotly(plotly_view, sizing_mode='stretch_both', margin=10),
    pn.pane.Matplotlib(mpl_view, format='png', sizing_mode='scale_both', tight=True, margin=10),
    pn.pane.Vega(altair_view, sizing_mode='stretch_both', margin=10),
    ncols=2,
    sizing_mode="stretch_both"
).servable()

plots