Gapminders#

import param
import numpy as np 
import pandas as pd
import panel as pn

import altair as alt
import plotly.graph_objs as go
import plotly.io as pio
import matplotlib.pyplot as plt

pn.extension('vega', 'plotly', defer_load=True, template='fast')
import hvplot.pandas

Configuration#

Let us start by configuring some high-level variables and configure the template:

XLABEL = 'GDP per capita (2000 dollars)'
YLABEL = 'Life expectancy (years)'
YLIM = (20, 90)
ACCENT = "#00A170"

PERIOD = 1000 # milliseconds

pn.state.template.param.update(
    site_url="https://panel.holoviz.org",
    title="Hans Rosling's Gapminder",
    header_background=ACCENT,
    accent_base_color=ACCENT,
    favicon="static/extensions/panel/images/favicon.ico",
    theme_toggle=False
)
<param.parameterized._ParametersRestorer object at 0x113c5df90>

Extract the dataset#

First, we’ll get the data into a Pandas dataframe. We use the built in cache to speed up the app.

@pn.cache
def get_dataset():
    url = 'https://raw.githubusercontent.com/plotly/datasets/master/gapminderDataFiveYear.csv'
    return pd.read_csv(url)

dataset = get_dataset()

YEARS = [int(year) for year in dataset.year.unique()]

dataset.sample(10)
country year pop continent lifeExp gdpPercap
1273 Romania 1957 17829327.0 Europe 64.100 3943.370225
93 Bahrain 1997 598561.0 Asia 73.925 20292.016790
1559 Trinidad and Tobago 2007 1056608.0 Americas 69.819 18008.509240
32 Algeria 1992 26298373.0 Africa 67.744 5023.216647
1516 Tanzania 1972 14706593.0 Africa 47.620 915.985059
160 Botswana 1972 619351.0 Africa 56.024 2263.611114
1572 Turkey 1952 22235677.0 Europe 43.585 1969.100980
1278 Romania 1982 22356726.0 Europe 69.660 9605.314053
230 Cameroon 1962 5793633.0 Africa 42.643 1399.607441
934 Malawi 2002 11824495.0 Africa 45.009 665.423119

Set up widgets and description#

Next we will set up a periodic callback to allow cycling through the years, set up the widgets to control the application and write an introduction:

def play():
    if year.value == YEARS[-1]:
        year.value = YEARS[0]
        return

    index = YEARS.index(year.value)
    year.value = YEARS[index+1]    

year = pn.widgets.DiscreteSlider(
    value=YEARS[-1], options=YEARS, name="Year", width=280
)
show_legend = pn.widgets.Checkbox(value=True, name="Show Legend")

periodic_callback = pn.state.add_periodic_callback(play, start=False, period=PERIOD)
player = pn.widgets.Checkbox.from_param(periodic_callback.param.running, name="Autoplay")

widgets = pn.Column(year, player, show_legend, margin=(0,15))

desc = """## 🎓 Info

The [Panel](http://panel.holoviz.org) library from [HoloViz](http://holoviz.org)
lets you make widget-controlled apps and dashboards from a wide variety of 
plotting libraries and data types. Here you can try out four different plotting libraries
controlled by a couple of widgets, for Hans Rosling's 
[gapminder](https://demo.bokeh.org/gapminder) example.

Source: [pyviz-topics - gapminder](https://github.com/pyviz-topics/examples/blob/master/gapminders/gapminders.ipynb)
"""

settings = pn.Column(
    "## ⚙️ Settings", widgets, desc,
    sizing_mode='stretch_width'
).servable(area='sidebar')

settings

Define plotting functions#

Now let’s define helper functions and functions to plot this dataset with Matplotlib, Plotly, Altair, and hvPlot (using HoloViews and Bokeh).

@pn.cache
def get_data(year):
    df = dataset[(dataset.year==year) & (dataset.gdpPercap < 10000)].copy()
    df['size'] = np.sqrt(df['pop']*2.666051223553066e-05)
    df['size_hvplot'] = df['size']*6
    return df

def get_title(library, year):
    return f"{library}: Life expectancy vs. GDP, {year}"

def get_xlim(data):
    return (data['gdpPercap'].min()-100,data['gdpPercap'].max()+1000)

@pn.cache
def mpl_view(year=1952, show_legend=True):
    data = get_data(year)
    title = get_title("Matplotlib", year)
    xlim = get_xlim(data)

    plot = plt.figure(figsize=(10, 6), facecolor=(0, 0, 0, 0))
    ax = plot.add_subplot(111)
    ax.set_xscale("log")
    ax.set_title(title)
    ax.set_xlabel(XLABEL)
    ax.set_ylabel(YLABEL)
    ax.set_ylim(YLIM)
    ax.set_xlim(xlim)

    for continent, df in data.groupby('continent'):
        ax.scatter(df.gdpPercap, y=df.lifeExp, s=df['size']*5,
                   edgecolor='black', label=continent)

    if show_legend:
        ax.legend(loc=4)

    plt.close(plot)
    return plot

pio.templates.default = None

@pn.cache
def plotly_view(year=1952, show_legend=True):
    data = get_data(year)
    title = get_title("Plotly", year)
    xlim = get_xlim(data)

    traces = []
    for continent, df in data.groupby('continent'):
        marker=dict(symbol='circle', sizemode='area', sizeref=0.1, size=df['size'], line=dict(width=2))
        traces.append(go.Scatter(x=df.gdpPercap, y=df.lifeExp, mode='markers', marker=marker, name=continent, text=df.country))

    axis_opts = dict(gridcolor='rgb(255, 255, 255)', zerolinewidth=1, ticklen=5, gridwidth=2)
    layout = go.Layout(
        title=title, showlegend=show_legend,
        xaxis=dict(title=XLABEL, type='log', **axis_opts),
        yaxis=dict(title=YLABEL, **axis_opts),
        autosize=True, paper_bgcolor='rgba(0,0,0,0)',
    )
    
    return go.Figure(data=traces, layout=layout)

@pn.cache
def altair_view(year=1952, show_legend=True, height="container", width="container"):
    data = get_data(year)
    title = get_title("Altair/ Vega", year)
    xlim = get_xlim(data)
    legend= ({} if show_legend else {'legend': None})
    return (
        alt.Chart(data)
            .mark_circle().encode(
                alt.X('gdpPercap:Q', scale=alt.Scale(type='log'), axis=alt.Axis(title=XLABEL)),
                alt.Y('lifeExp:Q', scale=alt.Scale(zero=False, domain=YLIM), axis=alt.Axis(title=YLABEL)),
                size=alt.Size('pop:Q', scale=alt.Scale(type="log"), legend=None),
                color=alt.Color('continent', scale=alt.Scale(scheme="category10"), **legend),
                tooltip=['continent','country'])
            .configure_axis(grid=False)
            .properties(title=title, height=height, width=width, background='rgba(0,0,0,0)') 
            .configure_view(fill="white")
            .interactive()
    )

@pn.cache
def hvplot_view(year=1952, show_legend=True):
    data = get_data(year)
    title = get_title("hvPlot/ Bokeh", year)
    xlim = get_xlim(data)
    return data.hvplot.scatter(
        'gdpPercap', 'lifeExp', by='continent', s='size_hvplot', alpha=0.8,
        logx=True, title=title, responsive=True, legend='bottom_right',
        hover_cols=['country'], ylim=YLIM, xlim=xlim, ylabel=YLABEL, xlabel=XLABEL
    )

Bind the plot functions to the widgets#

mpl_view    = pn.bind(mpl_view,    year=year, show_legend=show_legend)
plotly_view = pn.bind(plotly_view, year=year, show_legend=show_legend)
altair_view = pn.bind(altair_view, year=year, show_legend=show_legend)
hvplot_view = pn.bind(hvplot_view, year=year, show_legend=show_legend)

plots = pn.GridBox(
    pn.pane.HoloViews(hvplot_view, sizing_mode='stretch_both', margin=10),
    pn.pane.Plotly(plotly_view, sizing_mode='stretch_both', margin=10),
    pn.pane.Matplotlib(mpl_view, format='png', sizing_mode='scale_both', tight=True, margin=10),
    pn.pane.Vega(altair_view, sizing_mode='stretch_both', margin=10),
    ncols=2,
    sizing_mode="stretch_both"
).servable()

plots